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Abstract
The Tehran cardiometabolic genetic study (TCGS) is a large population-based cohort study that conducts periodic follow-ups. 
TCGS has created a comprehensive database comprising 20,367 participants born between 1911 and 2015 selected from four 
main ongoing studies in a family-based longitudinal framework. The study's primary goal is to identify the potential targets for 
prevention and intervention for non-communicable diseases that may develop in mid-life and late life. TCGS cohort focuses 
on cardiovascular, endocrine, metabolic abnormalities, cancers, and some inherited diseases. Since 2017, the TCGS cohort 
has augmented by encoding all health-related complications, including hospitalization outcomes and self-reports according 
to ICD11 coding, and verifying consanguineous marriage using genetic markers. This research provides an update on the 
rationale and design of the study, summarizes its findings, and outlines the objectives for precision medicine.

Keywords Tehran cardiometabolic genetic study (TCGS) · Precision medicine · Cardiometabolic biomarkers · Endocrine 
disease · Nutrition · Lifestyle · Consanguineous marriage · Cohort study
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NLRC5  NLR Family CARD Domain Containing 5
PRS  Polygenic risk score
RPGRIP1L  Protein Phosphatase 1, Regulatory Subunit 

134
SBP  Systolic blood pressure
SLC12A3  Solute Carrier Family 12 Member 3
SNPs  Single nucleotide polymorphisms
T1D  Type 1 diabetes
T2D  Type 2 diabetes
TC  Total cholesterol
TCGS  Tehran cardiometabolic genetic study
TCS  Thyroid cancer study
TFAs  Trans-fatty acids
TG  Triglycerides
TLGS  Tehran Lipid Glucose Study
TNXB  Tenascin XB
TOTS  Tehran Obesity Treatment Study
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WDP  Western dietary patterns
WGR   Whole-genome resequencing
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Introduction

Although the Iranian population is likely to have extensive 
genetic diversity, there is a significant lack of corresponding 
data in public genomic repositories. Therefore, the TCGS 
was initiated in 2011 to investigate the genetic makeup of 
Iranians. TCGS is a longitudinal, transgenerational study 
based on families, providing the demographic, biochemi-
cal, and genetic data of 20,367 participants over 22 years 
[1] which allows early screening to identify high-risk indi-
viduals who can be targeted for preventive interventions in 
primary and secondary healthcare systems.

Healthcare systems strive to improve efficiency and 
therapeutic benefit by utilizing genetic or molecular profil-
ing for groups of patients. As a result, precision medicine, 
by incorporating established biomarkers, functional tests, 
imaging, and new genomics and omics developments for 
each population, aims to provide the “right treatment to the 
right patient at the right time” [1]. TCGS aims to identify 
key genetic factors that contribute to the development of 
cardiometabolic disease in Iranians, as the effects of omics 
layers, particularly genetics, are well-known to vary across 
ethnicities. By combining genetic findings with additional 
non-genetic data types available in the TCGS cohort, it will 
be possible to accurately identify high-risk individuals and 
provide timely intervention and effective treatment. This 

project provides significant information and data relevant 
to the Iranian population that contributes to global knowl-
edge and serves as the first step toward implementing preci-
sion medicine in Iran.

TCGS design and characterization

TCGS study originated from the TLGS [2] that has followed 
up over 15,000 participants for at least 22 years without any 
pre-specified exclusion criteria. All individuals older than 
three years living in the area were invited to participate. The 
ongoing cohort project involves extensive surveys at base-
line and regular follow-ups every three years with trained 
staff recording the development of cardiometabolic diseases 
and corresponding biochemical factors such as high choles-
terol, low level of HDL-C, high TG, and behavior patterns 
such as smoking and physical activity [2]. In 2017 [3], we 
included  the TOTS [4], the TCS[5], and CFS, which further 
focused on obesity intervention, thyroid cancer, and clini-
cal genetic disorders. The TCGS project comprises 20,367 
participants selected from four longitudinal, ongoing, and 
family-based studies (Fig. 1). Demographic characteristics, 
ethnicity, blood test results, medical history, drug history, 
gynecology-related information, diet, physical activity, and 
smoking information were gathered for each participant.

Between 1999 and 2022, data from all original projects, 
except for TOTS, was collected and digitized from paper-
based questionnaires. However, in the TOTS study, physi-
cians used computer-based questionnaires to record partici-
pants' medical conditions. Medical information was coded 
according to the International Statistical Classification of 
Diseases and Related Health Problems (ICD) version 11 
(Supplementary file 2). All medical information was cat-
egorized as a self-report (SR) or obtained through follow-
up during hospitalization (H). A detailed description of the 
TCGS population, including sex, age, ethnicity, and disease 
frequency, is provided in Table 1. Ethnicity status for 6,177 
participants was collected through self-reporting and ques-
tionnaires on the birthplaces of the past three generations. 
Information on the genotypes of 3851 out of 6177 individu-
als was also recorded. The inclusion of various ethnic groups 
in the TCGS project provides insight into the diversity of 
the Iranian population, with the most frequent groups being 
Persian (76.6%), Turk (12.1%), and Gilak (3.8%) (Table 1).

The genotyping of 16,226 TCGS participants was per-
formed using Illumina Human OmniExpress-24-v1-0 bead 
chip, which contains 652,919 SNP loci, at the deCODE 
genetics/Amgen company (Iceland) according to the manu-
facturer's specifications (Illumina Inc., San Diego, CA, 
USA) [6] (Tables S2, S3, S4, and S5). IBD information 
was derived from genotypes and used to confirm all famil-
ial relationships. Around 660 couples met the threshold of 
0.05 for consanguineous marriage relatedness, representing 
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a consanguineous marriage rate of 28.50% (Figure S7). 
Among the couples with no IBD information, 543 declared 
consanguinity, resulting in an overall rate of 28.15%. The 
study used genotyping information to correct familial 
relationships and assigned FID (Figure S5). The number 
of the cluster was 4,428 (mean ± standard deviation (sd)): 
3.87 ± 1.86, (Min, Max: 1, 16)), and after correction, the 
number of FIDs was 3,320 (mean ± sd: 5.51 ± 5.41, (Min, 
Max: 3, 56)) with 1132 individuals. There were 6,368 
nuclear families with 26,392 parents/offspring and 5,051 
sibships after correction. The relationship distribution in 
TCGS families is shown in Figure S6.

The TCGS project has used the ICD-11 classification to 
create a comprehensive and standard system for diagnosing 
health conditions. A total of 24 ICD-11 chapters were used 
to identify 873 specific health conditions in TCGS partici-
pants [7], as detailed in Supplementary file 2. To examine 
the most commonly reported mortality and morbidity statis-
tics, we focused on the top five ICD-11 groups presented in 
Table S6. The findings indicate that a significant number of 
participants in the study had diabetes mellitus in pregnancy, 
goiter, and hypothyroidism as their top health conditions. 
These findings could be attributed to the study's initial focus 
on cardiovascular disorders, diabetes, and thyroid disease.

Risk factors and outcomes assessment

Here we present the key results from analyzing the most 
extensively studied traits in this population. Our goal is to 
identify genetic markers and their specific effects on this 
population, which can be used in more targeted risk manage-
ment toward precision medicine. We outline the objectives 
of studying these traits and summarize the findings.

Blood pressure

Objective

Elevated BP is the most common risk factor for cardiovas-
cular and renal diseases and is responsible for a signifi-
cant proportion of morbidity and mortality worldwide[8]. 
Both genetic and environmental factors influence BP. To 
investigate the genomic basis of BP, we conducted various 
analyses, including familial aggregation analysis, heritabil-
ity analysis [9], family-based linkage study [10], GWAS, 
epistasis analysis, and estimation of PRS[11]

Key methods and data collection

The primary outcome of interest was the incidence of HTN, 
as well as corresponding SBP and DBP levels, across three 
age groups: children (1–9 years), adolescents (10–17 years), 
and adults ( ages 18 and older). For adults, HTN was defined 
as SBP ≥ 140 mmHg, DBP ≥ 90 mmHg, or if the partici-
pant was taking antihypertensive medication [13]. All par-
ticipants with their average SBP and DBP during follow-up 
visits were included in the subsequent analysis. Missing 
BMI and WC were imputed.

Main results

Our research on Iranian families revealed that SBP, DBP, 
BMI, and WC were highly correlated in mother–offspring and 
sister-sister relationships, with heritability estimates of 25% 
and 30% for SBP and DBP, respectively, during a follow-up 
of 15 years. Members of index families with higher familial 
BMI or WC were found to have a significantly increased risk 

Fig. 1  Description of projects 
which attended TCGS



 M. S. Daneshpour et al.

1 3

of hypertension. We observed consistent and strong AGT  gene 
signals linked with SBP and DBP, NLGN1 gene linked with 
SBP and HTN, and epistasis of TNXB gene and known genetic 
variants linked with all BP traits. In the GWAS analysis, we 

identified consistent signals on the ZBED9 gene associated 
with HTN in the genome-wide borderline threshold after 
adjusting for different environmental predictors. Our finding 
on ZBED9 gene was confirmed by linkage analysis in an inde-
pendent sample for all BP traits. Furthermore, single-locus 
analysis identified two missense variants in ZBED9 (rs450630) 
and AGT  (rs4762) associated with hypertension. Interestingly, 
the G allele of rs450630 exhibited an antagonistic effect on 
hypertension, but IGENT analysis revealed significant epista-
sis effects for different combinations of ZBED9, AGT , and 
TNXB loci in the further analysis [12].

Future direction

In the upcoming research, we plan to concentrate on two 
areas of investigation. Firstly, we aim to study individuals 
with MH, commonly observed in childhood or adolescence 
and characterized by elevated blood pressure levels and 
resistance to standard treatment. Our population will be 
explored for mutations that enhance renal sodium reabsorp-
tion through mineralocorticoid-dependent or independent 
mechanisms, resulting in fluid retention and increased blood 
pressure. The carriers will be identified and excluded from 
the case group while doing the association analysis for com-
plex hypertension.

Second, we intend to calculate the PRS for hypertension 
in our population. The PRS is a promising tool for pre-
dicting the risk of complex diseases. However, it has been 
shown that the performance of PRS may vary across dif-
ferent ethnic populations due to differences in the under-
lying genetic architecture of these populations. Therefore, 
we aim to identify the associated genetic variants and their 
effects on hypertension in our study population. Then, we 
will calculate the PRS for each individual using a standard-
ized approach that considers the population-specific genetic 
variants and their effect sizes. We will also assess the per-
formance of the PRS in our study population and compare 
it to other populations to evaluate the generalizability of the 
PRS across different ethnicities. This finding will allow us 
to determine the clinical utility of the PRS for hypertension 
prediction in our population and potentially other popula-
tions with similar genetic backgrounds. Calculating the 
PRS for hypertension will provide valuable insights into the 
genetic basis of hypertension and facilitate the development 
of personalized prevention and treatment strategies for this 
complex disease.

Diabetes

Objective

T2D is a serious and widespread disease associated with 
increased mortality and the development of CVD [13] on 

Table 1  Baseline characteristics of participants in the TCGS

*These participant counts are based on either the data from the par-
ticipant's self-reported questionnaire or the information obtained from 
their hospitalizations. These numbers could shift depending on the 
results of the laboratory tests

Participants,  n* 20,367

Female, n (%) 10,558 (51.8)
Age at baseline mean (s.d.) 46.86 (21.53)
Iranian ethnicity, n Persian, n 4729

Turk, n 746
Gilak, n 255
Lur, n 133
Arab, n 84
Kurd, n 69
Balouch, n 28
Turkman, n 14
Tat, n 13
Qashqai, n 3
Mixed, n 103

Metabolic disease Obesity 1580
Diabetes mellitus 2280
Dyslipidemia 1852
Polycystic ovary 3520
Rickets 15

Cardiovascular disease Hypertensive heart disease 2282
Heart failure 209
Acute myocardial infarction 1205
Coronary artery disease 1573
Chronic ischemic heart disease 1024
Heart valve diseases 114

Liver disease Inflammatory liver disease 174
Non-alcoholic fatty liver disease 280

Malignancy Breast Cancer 128
Pancreatic cancer 19
Gastrointestinal cancer 129
Prostate Cancer 34
Lung cancer 18

Inflammatory disease Psoriasis 52
Rheumatoid arthritis 277

Neurological disorder Cerebrovascular accident 572
Epilepsy 372
Parkinsonism 42

Kidney disease kidney failure 47
Chronic kidney disease 59

Respiratory disorder Chronic obstructive pulmonary 
disease

75

Asthma 333
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a global scale. Given the prevalence of T2D in the Iranian 
population, our study seeks to examine the genetic archi-
tecture underlying the disease. Specifically, we aim to 
identify and characterize genetic variants associated with 
an increased risk of T2D in the Iranian population and to 
understand better the mechanisms underlying this disease in 
this specific population. By elucidating the genetic underpin-
nings of T2D in the Iranian population, we hope to develop 
more targeted and effective interventions for preventing and 
treating this debilitating disease. Our study may also con-
tribute to a broader understanding of the genetic basis of 
T2D and inform the development of clinical strategies for 
managing this disease in other populations.

Key methods and data collection

As an initial step in finding the genetic architecture of T2D 
in Iranians, we evaluated the segregation, aggregation, and 
family-based heritability among TCGS participants. Addi-
tionally, we calculated a restricted weighted PRS (p ≤ 5e-8) 
for TCGS participants and assessed its association with T2D 
incidence.

Main results

Familial aggregation and heritability of T2D were estimated 
by utilizing the TCGS family structure [14]. We constructed 
2,594 constituent pedigrees based on 13,741 individuals 
aged over 20 (mean ± sd: 39.71 ± 16.56 years), where the 
familial aggregation of T2D was found to be significantly 
significant (p < 0.05), and family-based heritability indicated 
that genetic variation accounted for 65% of T2D develop-
ment and expression (SE = 0.034). Complex segregation 
analysis showed that the polygenic model was a good fit 
for illustrating the mode of inheritance of T2D among the 
TCGS participants. The risk of parental effect was higher 
than that of siblings within first-degree relatives (OR = 4.11 
vs. OR = 1.65), and family history of T2D among first-
degree relatives was more significant than the second-degree 
relatives (OR = 3.84 vs. OR = 0.59).

Later, as a first step toward predicting T2D develop-
ment using a person-specific genetic profile, Moazzam-Jazi 
et al. identified multiple T2D-associated SNPs that were 
significantly enriched in the TCGS cohort compared to the 
global population [15]. These results could partly explain 
the differences in drug response and subsequent treatment 
efficiency among cases with diverse ancestries. The cumula-
tive effect of enriched risk SNPs was assessed by comput-
ing the PRS for adults aged 20 years or older. A significant 
association was found between the PRS and T2D incidence 
in the TCGS cohort. Hence, the high genetic burden of 
T2D across the Iranian population could contribute to the 
enhanced prevalence of the disease in this population. They 

also demonstrated a high hazard of T2D development in the 
genetically high-risk individuals compared to the genetically 
low-risk individuals in the model adjusted for age, sex, BMI, 
and other biochemical T2D risk factors [15].

Future direction

Shortly, we intend to focus on the genetic characterization of 
different types of diabetes, including T1D, T2D, and MODY. 
It is essential to differentiate between these three types of 
diabetes for effective treatment and management at different 
healthcare system levels. For example, sulfonylureas, which 
stimulate insulin secretion, can be effective for treating T2D 
and MODY 3 subtypes but may be less effective or even 
harmful in patients with T1D due to the absence of func-
tional beta cells. Therefore, accurate diagnosis and classifi-
cation of diabetes are critical steps toward the personalized 
treatment and management of this disease. It can be feasible 
by characterizing the key and novel genetic variants in dia-
betic patients in the Iranian population.

Furthermore, making the PRS based on associated 
genetic variants and their weight in the Iranian population 
is necessary. So far, this population has not been part of 
the global effort for GWASs, and we do not know which 
variants with what weight are best for creating a PRS for 
the Iranian population. As such, conducting a large-scale 
GWAS in the Iranian population is crucial to identify and 
characterize the genetic variants associated with T2D and 
other types of diabetes. By doing so, we can develop more 
accurate and effective PRS models for predicting the risk of 
diabetes in this population. Additionally, integrating genetic 
data with clinical and lifestyle factors can further enhance 
the precision of personalized diabetes management and pre-
vention strategies. Ultimately, this may lead to better health 
outcomes and a reduced burden of diabetes on the Iranian 
healthcare system.

Lipid profile

Objective

Due to the central role of lipid profile in the development 
of cardiometabolic disease, we performed candidate gene 
analyses to identify variants associated with lipids in the 
Iranians. We also investigated the potential of genomic pre-
diction for lipid profile traits.

Key methods and data collection

In the TCGS population, we utilized a nested case–control 
approach to investigate two SNPs related to CHD incidence. 
In addition, we proposed a novel strategy to identify the 
optimal number of SNPs with the most contribution to the 
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explanation of genomic phenotypic variation. This strat-
egy employed a tenfold-10-repeat cross-validation method 
that utilized both WGR and GWAS. By implementing this 
approach, we aimed to enhance the computational efficiency 
of the making GRM in gBLUP [16]. Furthermore, we evalu-
ated the strategy on lipid traits, including HDL-C, LDL-C, 
TG, and TC among TCGS participants.

Main results

Our findings demonstrated that certain genetic variations, 
specifically rs2048327-G (SLC22A3) and rs17465637-C 
(MIA3), increase the risk of CHD. The risk is around twice 
higher in males with the rs2048327-G allele and females 
with the rs17465637-C allele. We have observed that in 
male carriers of the rs2048327-G allele, HDL-C levels can 
significantly increase the likelihood of developing CHD in 
the future [17]. Additionally, our study has shown a signifi-
cant association between risk allele of rs7865618 and CHD 
development in the TCGS population (p = 0.03, OR = 1.73, 
CI95%:1.04–2.88) [18].

In addition, we aimed to investigate whether the CETP 
gene polymorphisms of rs5882 and rs3764261 impact the 
relationship between diet and changes in serum lipid profile. 
For this purpose, we selected 4700 individuals aged 18 and 
above from the TCGS participants and assessed changes in 
their serum lipid profile after 3.6 year follow-up period. Our 
results showed that carriers of the rs3764261-A allele had 
a greater reduction in TC levels when consuming a higher 
quartile of fish intake than those with the CC genotype. 
Conversely, the carriers of the rs5882-G allele showed an 
ascending trend in TG levels across quartiles of total fat, 
monounsaturated, and saturated fat consumption compared 
to those with the AA genotype. In contrast, carriers of the 
rs5882-G showed a declining trend in mean changes in TG 
concentrations across quartiles of carbohydrate intake com-
pared to those with the AA genotype[19].

We conducted a study to identify informative SNPs that 
could explain the genotypic heritability of lipid traits. These 
findings showed that the highest prediction accuracy in pre-
dicting these traits was achieved when considering all SNPs. 
In contrast, only subsets of SNPs associated with these traits, 
as obtained from previous GWAS, resulted in the lowest 
prediction accuracy. However, the subset of SNPs referred 
to as "truly influential SNPs" showed interesting results in 
capturing significant genotypic variance and contributing to 
heritability [16].

Additionally, Sung's two-step method [20] was 
employed to identify pleiotropic genetic variants that 
exhibited a significant association with the longitudinal 
data of HDL-C, LDL-C, TC, and TG. Initially, a three-level 
GLMM was fitted for each longitudinal trait as a response 
variable, followed by a simultaneous genetic association 

test via the GQLSM for each SNP. The results indicated 
that twenty variants from six genes, including C16orf95, 
SLC12A3, CETP, NLRC5, ESRP2, and C16orf95 genes, 
were strongly associated (p-value < 6.6 ×  10–5) with HDL-
C, TC, and TG [21].

Future direction

The TCGS population presents a valuable opportunity to 
study monogenic lipid disorders, as it features a high rate 
of consanguineous marriages and extensive familial data. 
This opportunity allows for exploring the genetic basis of 
FH and other monogenic lipid disorders and investigating 
underlying molecular mechanisms. The genomic study on 
lipids in the TCGS population may uncover potential novel 
targets for therapeutic interventions.

In addition, the development of PRS can aid in com-
prehending the intricate genetic basis of diseases and their 
occurrence in specific populations. PRS can identify high-
risk individuals for lipid metabolism disorders, including 
FH, and provide personalized preventive and therapeutic 
strategies. Integrating PRS with monogenic lipid disorder 
studies may also help explain the significant lipid abnor-
malities in the Iranian population. The studies could pro-
vide valuable insights into the Iranian population's genetic 
and environmental determinants of lipid metabolism and 
cardiovascular disease.

Obesity

Objective

The absence of studies on the genetic factors contributing 
to obesity in the Iranian population is a significant limita-
tion for advancing personalized medicine. Therefore, to 
address this knowledge gap, our objective was to identify 
genetic variants associated with obesity and related traits, 
including WC, WHR, TG, TC, LDL-C, and HDL-C, and to 
assess their aggregated effects on the incidence of obesity 
among Iranians.

Key methods and data collection

After implementing quality control measures on the data, 
we utilized various regression tests to perform association 
analyses. All models were adjusted for the relevant covari-
ates, such as age and sex. For PRS calculation, we used 
weighted PRS. We applied a false discovery rate (FDR) 
correction at the 5% significance level to account for mul-
tiple testing.



Cohort profile update: Tehran cardiometabolic genetic study  

1 3

Main results

We conducted a family-based linkage and linkage disequi-
librium analysis of 3,109 pedigrees in the first comprehen-
sive study on Iranian pedigrees. Our results showed that 
RPGRIP1L is the key gene within the 16q12.2 region, and 
its polymorphisms could be associated with obesity risk fac-
tors among TCGS participants [22]. Moreover, we found 
that different SNP clusters composed of rare and common 
SNPs within the 16q12.2 region significantly increased BMI 
among Iranians. These clusters were randomly distributed 
across the region, with a higher density around FTO, AIK-
TIP, and MMP2 genes[23].

In a separate study, we discovered that nine correlated 
SNPs located upstream of the PPARG  gene are significantly 
involved in the occurrence of long-term and persistent 
obesity [24]. Four SNPs in the MC4R gene are also sig-
nificantly associated with the percentage of excess weight 
loss (EWL%) and BMI weight loss (EBMIL%), particularly 
after bariatric surgery lasting 12 months [25]. Moreover, 
rs13107325 was significantly associated with the increased 
likelihood of persistent metabolically healthy obesity in 
menopaused women [26].

FTO is represented as one of the central genes involved 
in obesity and its corresponding traits. Several FTO vari-
ants, including rs1421085, rs1558902, rs1121980, and 
rs8050136) were significantly associated with the MUO 
phenotype even after adjusting for lipid profile. However, 
no significant association was observed between those 
SNPs and metabolically healthy obesity [27]. Another 
study investigated the interaction between dietary patterns 
and FTO polymorphisms regarding changes in BMI and 
WC over 3⋅6 year follow-up period [28]. Six common SNPs 
(rs1421085, rs1121980, rs17817449, rs8050136, rs9939973, 
and rs3751812) within the FTO gene region were examined. 
The study revealed that individuals with the risk alleles and 
higher WDP scores had nearly a two-fold higher BMI than 
those without the risk alleles.

In individuals with a higher PRS, BMI, and WC tend to 
increase along with increasing WDP score [29]. This find-
ing suggests that individuals with a genetic predisposition 
to obesity are more susceptible to the detrimental effects of 
an unhealthy diet and emphasizes the importance of reduc-
ing the consumption of unhealthy foods to prevent obesity. 
Additionally, WC increased with increasing WDP score 
in carriers of the risk alleles of rs1121980 and rs3751812 
but not those without any risk alleles. A higher intake of 
TFAs in adults carrying the FTO rs8050136 risk allele was 
also found to significantly increase BMI and WC over an 
average follow-up of 3.6 years [29]. However, no signifi-
cant interaction was found between combined FTO vari-
ants (rs1121980, rs14211085, and rs8050136) and dietary 

diversity score concerning general obesity, indicating that 
dietary diversity patterns may play a mediatory role in the 
presentation of obesity-related factors [30].

A healthy dietary pattern could modify the impact 
of MC4R rs17782313 on general obesity. The interac-
tion between the risk allele of rs17782313 and a higher 
healthy dietary pattern score results in a lower risk of 
prevalent obesity than those without the risk allele [31]. 
In a recent study, we identified that eight common SNPs 
in or near the MC4R gene are significantly associated with 
increased BMI, WC, and WHR over a lifetime. Interest-
ingly, they found that the aggregated effect of these SNPs 
significantly influences increased BMI and WC only in 
early adulthood, not during the middle or early adulthood 
stages. Therefore, the effect of MC4R risk SNP may not 
remain constant during the lifetime [32].

Future direction

The etiology of monogenic obesity differs substantially 
from the more prevalent form of obesity. Our initial 
approach involves screening known and suggested muta-
tions associated with monogenic obesity to advance our 
understanding of this complex trait. In the further step, we 
aim to conduct a GWAS that encompasses various sub-
types of obesity, such as normal weight obese, metaboli-
cally obese normal weight, metabolically healthy obese, 
and metabolically unhealthy obese. By doing so, we hope 
to identify potential genetic markers associated with the 
various forms of obesity and gain insight into the underly-
ing mechanisms driving this condition.

Metabolic syndrome

Objective

Metabolic syndrome (MetS) is a complex disease charac-
terized by metabolic disorders such as abdominal obesity, 
dyslipidemia, hyperglycemia, and HTN. The development 
of MetS is primarily influenced by environmental fac-
tors such as an inappropriate diet and physical inactivity 
[33, 34]. Also, genetic factors play a role, as suggested 
by familial aggregation and heritability studies [35, 36]. 
Researchers have identified several locations associated 
with an increased risk of this syndrome [37]. By exam-
ining the interaction between these genetic variants and 
dietary factors associated with MetS, new strategies for 
preventing and treating MetS can be developed. We inves-
tigated the role of genetic variations, advanced statistical 
models, and gene-nutrient interactions in the risk of MetS.
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Key methods and data collection

The first study involved a retrospective cohort study of 5,666 
participants from the TCGS. The aim was to examine the 
relationship between MetS and its components with three 
GCKR polymorphisms (rs780093, rs780094, and rs1260326) 
using linear and logistic regression analyses in an additive 
genetic model. Moreover, the Cox regression analysis was 
performed to evaluate the association of these variants with 
the development of MetS over time [38].

Furthermore, several studies with smaller sample sizes 
have investigated gene-diet interactions in TCGS partici-
pants to predict the risk of MetS. One candidate gene study 
analyzed GCKR gene variants and clinical and demographic 
information on 4,756 eligible TCGS participants to develop 
an optimal prediction model (s) for MetS. Then, predictive 
models were compared (logistic regression (LR), Random 
Forest (RF), decision tree (DT), support vector machines 
(SVM), and discriminant analyses) [42]. Continuing to find 
optimal statistical models for predicting MetS, we designed 
a study that evaluated the association of MetS and three 
genes, namely BUD13, ZPR1, and APOA5, with 18 SNPs 
in 5,421 TCGS participants. This study was a cross-sectional 
study that employed two models for data analysis. The first 
model examined the association between variants and MetS, 
while the second model (HTG-MetS) evaluated the associa-
tions between genetic variants and MetS patients with high 
plasma TG levels. Four-gamete rules were also used to form 
SNP sets from correlated SNPs. The kernel machine regres-
sion models and single SNP regression were employed to 
estimate the association between SNP sets and MetS [43]. 
Two studies subsequently examined the association of CETP 
gene polymorphisms (rs5882 and rs3764261) in 441 MetS 
cases and 844 matched controls and TCF7L2 gene variants 
(rs7903146 and rs12255372) in 1,423 individuals with die-
tary intakes to predict the risk of MetS. [39, 40].

Main results

The study showed that functional GCKR variants were 
associated with higher TG and lower fasting blood sugar 
(FBS) levels. Moreover, the results of Cox-adjusted model 
regression revealed that carriers of rs780094, rs780093, and 
rs1260326 TT genotypes had a higher risk of MetS inci-
dence [38]. The logistic regression model showed a signifi-
cant association of MetS with age, gender, schooling years, 
BMI, and physical activity, rs780094 and rs780093. Ran-
dom Forest analysis revealed that BMI, physical activity, 
and age are the most influential model features. Decision tree 
analysis showed that individuals with BMI < 24 and physical 
activity < 8.8 had a lower risk of developing MetS [41]. In 
another study, the kernel machine analysis showed that two 
sets of over three sets of correlated SNPs have a significant 

joint effect on MetS and HTG MetS models. Moreover, a 
single SNP regression analysis indicated that the highest OR 
in the HTG MetS model was for the G allele in rs2266788 
(MetS: OR = 1.3, HTG MetS: OR = 1.4) and the T allele in 
rs651821(MetS: OR = 1.3, HTG MetS: OR = 1.4). Although 
both models had the same ORs, the p-values in the HTG 
MetS model were marginally more significant [42].

Another study investigated the potential relationship 
between a specific genetic variant (rs5882) and dietary 
macronutrient intake concerning metabolic syndrome 
(MetS) risk. The results indicate that this genetic variant 
does not interact with macronutrient intake concerning MetS 
risk. However, the study found that individuals carrying the 
G allele and consuming monounsaturated fatty acids and 
total fat in the lowest quartile had a reduced risk of low 
HDL-C. Conversely, those carrying the G allele and con-
suming higher levels of trans-fatty acids had an increased 
risk of high blood pressure [39]. We also observed that 
consuming nuts in the highest tertile was associated with a 
reduced risk of MetS among T allele carriers of rs12255372, 
resulting in a 34% reduction of MetS risk [40].

Future direction

Metabolic syndrome is a complex condition characterized 
by three or more risk factors out of five. Each risk factor has 
unique genetic variations. Therefore, it may be beneficial to 
cluster individuals based on their combination of risk factors 
and track them longitudinally. We can identify individuals 
with similar genetic profiles and risk factor combinations 
by doing so. This information can then be used to perform 
genetic analyses specific to each group, allowing for more 
targeted and personalized treatment options. This approach 
may improve the effectiveness of treatments by considering 
the specific genetic and metabolic factors present in each 
individual.

Others

Run of homozygosity (ROH)

Objective

Consanguineous marriages have traditionally been favored 
in certain cultures. However, this practice may increase the 
inbreeding coefficient and the run of homozygosity (ROH). 
Inbreeding can negatively affect various fitness-related 
characteristics in humans, leading to inbreeding depression. 
Consanguineous families are likelier to have children with 
major abnormalities, including severe genetic diseases and 
mutant phenotypes that can be lethal in early life. Hence, it 
is essential to understand the genetic basis of these effects. 



Cohort profile update: Tehran cardiometabolic genetic study  

1 3

The initial aim was to estimate the effect of the fraction of 
ROH and the FROH on a handful of quantitative and binary 
traits of TCGS participants along with 118 other studies and 
to compare the ROH pattern between the nations [43].

Key methods and data collection

The TCGS cohort was one of the 119 independent genetic 
epidemiological study cohorts participating in the ROH-
gen consortium. For this analysis, 11,760 participants were 
included. These participants were classified into Western 
Asian/Persian groups, excluding ethnic outliers, duplicates, 
gender mismatches, and unresolvable pedigree mismatches. 
The study identified ROH greater than 1.5 Mb in length for 
18 traits, categorized into ten groups (Table 7 S).

Main results

The analysis of the TCGS cohort revealed a mean of FROH 
greater than 1.5 Mb of 0.017, with a standard error of 0.026. 
Additionally, We calculated the fixation index (FIS), which 
measures inbreeding resulting from non-random mating in 
the most recent generation. The study found a correlation 
between FROH and other measures of inbreeding, includ-
ing FSNP (correlation coefficient of 0.98 FGRM (correla-
tion coefficient of 0.98), and FSN_OutsideROH (correlation 
coefficient of 0.091). This consortium data analysis suggests 
that the TCGS cohorts exhibit high consanguinity compared 
with other studies.

COVID‑19

Objective

Our main goal was to investigate the molecular processes 
underlying the development of SARS-CoV-2 infection from 
a genetic perspective, considering both human and viral 
genetic factors. To achieve this goal, we conducted three 
distinct studies to examine the impact of genetic variations 
in the ACE2 gene, which encodes one of the main SARS-
CoV-2 receptors and explore the role of human long non-
coding RNAs (lncRNAs) in recognizing and responding 
to the virus. Additionally, we used computer simulations 
to model and analyze the essential molecular interactions 
between coronaviruses and the human genome.

Key methods and data collection

In the first study, we utilized structural bioinformatics sim-
ulation techniques to identify and analyze all the genetic 
polymorphisms present in the ACE2 and TMPRSS2 genes 
within TCGS participants. We then assessed how these poly-
morphisms influenced the ability of the virus affinity. The 

second study examined the interaction between human long 
non-coding RNAs and the SARS-CoV-2 genome by analyz-
ing publicly available RNA sequencing data using various 
in silico approaches. Additionally, we identified the specific 
regions of the SARS-CoV-2 genome that physically interact 
with lncRNAs responsive to infection. Lastly, we utilized a 
high-throughput computational approach in the third study 
to investigate the likelihood of interactions between host 
RNA-viral and viral RNA-host proteins.

Main results

In the first study, we identified 570 genetic variations, 
including SNP and INDEL, located near or within the ACE2 
gene among TCGS participants. Interestingly, two missense 
variants, K26R and S331F, were found to reduce the recep-
tor's affinity for the viral spike protein, with only K26R pre-
viously reported. We also investigated the important details 
of ACE2-Spike and ACE2-TMPRSS2 interactions, empha-
sizing the essential role of Arg652 of ACE2 in the protease 
function of TMPRSS2 [44].

In the second study, we found that three trans-acting lncR-
NAs (HOTAIRM1, PVT1, and AL392172.1 were responsible 
for establishing more than half of the interactions between 
lncRNAs and protein-coding genes (PCGs) in bronchoal-
veolar lavage fluid samples. These lncRNAs also exhibited 
a high affinity for binding to the SARS-CoV-2 genome, 
suggesting their significant regulatory role during SARS-
CoV-2 infection. Additionally, we identified the involvement 
of MALAT1 and NEAT1 in the development of inflammation 
in SARS-CoV-2 infected cells. Our analysis also revealed 
that the 5′ part of the SARS-CoV-2 genome interacts with 
many human lncRNAs, while the 3′ part does not [45].

Finally, our RNA–protein interaction study demonstrated 
that key viral proteins involved in viral genome replication 
and transcription are conserved during evolution and have 
restricted interaction abilities to maintain their functions. 
Undesired interactions do not perturb the functions of these 
proteins. In contrast, the non-structural protein 3 (NSP3) of 
SARS-CoV-2 exhibits a hypermutation rate, which endows it 
with the affinity to interact with diverse host cell RNAs [46].

Main strengths and weaknesses

The TCGS project has numerous strengths, including the 
longitudinal tracking of participants from an early age that 
has allowed for identifying risk factors for complex cardio-
vascular outcomes over time. Additionally, the project has 
provided insights into the familial aggregation and genetic 
determinants of cardiometabolic risk factors across multiple 
generations. The study's measurements were performed by 
trained technicians, not self-reported, which adds credibil-
ity. Moreover, the project collected phenotypic data from 
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participants of all ethnicities and age groups, and these data 
were coded based on the last version of ICDs. Nonetheless, 
our works have some limitations. First, some genotyped par-
ticipants do not have sufficient information about CRF, or 
there might be differences in phenotype measurement and 
definition between parents' studies. Hence, some information 
will be lost during genetic analysis. Also, due to the small 
sample size in TCGS compared to the Iranian population and 
possible ethnic differences, the findings may not be gener-
alizable to all Iranians, indicating the need for national and 
international replication. The last limitation is the lack of 
diversity in the clinical phenotypes, which reduces the pos-
sibility of examining and evaluating all disease categories. 
We lack a sufficient sample size to evaluate all disease cat-
egories. In the future, it may be possible to validate the self-
reports via patient visits in the clinic and perform additional 
examinations to improve measurement accuracy.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10654- 023- 01008-1.
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